# HE200 medium

## Chemically defined medium

## Description

HE200 medium has been developed for the growth of human embryonic kidney (HEK) 293 cells, such as Expi293F, 293-F, or 293T cells, and the high production of recombinant proteins or the transfection assay in serum-free culture. HE200 medium is a chemically defined, serum-free, protein-free, animal origin-free medium that contains no protein, hydrolysates, or components of unknown composition.

(Storage; 2°C to 8°C / Protect from light)

## **Culture conditions**

Cell line: 293 cells Culture type: Suspension Culture vessels: Flask, plate, dish, or culture bag, etc. Incubate atmosphere: Humidified atmosphere of 5–8% CO<sub>2</sub> in air Temperature range: 36°C to 38°C Shaker culture: 120–130 rpm

## Prepare medium

HE200 medium requires supplementation with L-glutamine or L-alanyl-L-glutamine.

- 1 Add 200 mM L-glutamine or L-alanyl-L-glutamine, 2–8 mM final concentration, to the medium.
- 2 HE200 medium contains no antibiotics. Please supply to the medium as necessary.

## Thaw and Subculture method

For Shaker Culture (125-mL Shaker Flasks)

- 1 Thaw 293 cells in a water bath and transfer into a 15-mL tube containing 10 mL of HE200 medium.
- 2 Resuspend with 10 mL of HE200 medium, count cells and determine cell viability.
- 3 Transfer cells at a seeding density of 3 x 10<sup>5</sup> cells/mL (2–4 x 10<sup>5</sup> cells/mL) into a 125-mL shaker flask containing 30 mL of HE200 medium and incubate at 37°C.
- 4 On the second day culture, harvest cells with a 50-mL tube, and determine the viable cell density.
- 5 Transfer cells at a seeding density of  $3 \times 10^5$  cells/mL (2–4 x  $10^5$  cells/mL) into a 125-mL shaker flask containing 30 mL of HE200 medium and incubate at  $37^{\circ}$ C.
- 6 On the fourth day culture, harvest cells with a 50-mL tube, and determine the viable cell density.
- 7 Subculture cells at a seeding density of  $3 \times 10^5$  cells/mL (2–4 x  $10^5$  cells/mL) every 4 days (3–5 days) with fresh HE200 medium.
- 8 For your experiments before using, subculture 293 cells a minimum of three times to allow them to

recover from cryopreservation.

For Static Culture (T75 Flasks)

- 1 Thaw 293 cells in a water bath and transfer into a 15-mL tube containing 10 mL of HE200 medium.
- 2 Resuspend with 10 mL of HE200 medium, count cells and determine cell viability.
- 3 Transfer cells at a seeding density of 3 x 10<sup>5</sup> cells/mL (2–4 x 10<sup>5</sup> cells/mL) into a T75 flask containing 25 mL of HE200 medium and incubate at 37°C.
- 4 On the second day culture, harvest cells with a 50-mL tube, and determine the viable cell density.
- 5 Transfer cells at a seeding density of 3 x 10<sup>5</sup> cells/mL (2–4 x 10<sup>5</sup> cells/mL) into a T75 flask containing 25 mL of HE200 medium and incubate at 37°C.
- 6 On the fourth day culture, harvest cells with a 50-mL tube, and determine the viable cell density.
- 7 Subculture cells at a seeding density of  $3 \times 10^5$  cells/mL (2–4 x  $10^5$  cells/mL) every 4 days (3–5 days) with fresh HE200 medium.
- 8 For your experiments before using, subculture 293 cells a minimum of three times to allow them to recover from cryopreservation.

#### Adaptation method to HE200 medium

We recommend both direct and sequential adaptation method, adapting 293 cells to HE200 medium. It is critical that the growth rate is in mid-logarithmic phase before adaptation culture.

For direct adaptation (125-mL Shaker Flasks)

- 1 Harvest cells and ensure that the growth rate is in mid-logarithmic phase.
- 2 Transfer cells at a seeding density of 3 x 10<sup>5</sup> cells/mL (2–4 x 10<sup>5</sup> cells/mL) into a 125-mL shaker flask containing 30 mL of HE200 medium and incubate at 37°C.
- 3 On the fourth day culture, harvest cells by pipetting with a 50-mL tube and determine the viable cell density. **Do not use trypsin.**
- 4 Subculture cells at a seeding density of 3 x 10<sup>5</sup> cells/mL (2–4 x 10<sup>5</sup> cells/mL) every 4 days (3–5 days) with fresh HE200 medium.
- 5 Continue to subculture cells as necessary every 4 days (3–5 days) with fresh HE200 medium until consistent growth is achieved.

#### Cryopreservation

- 1 Prepare the cryopreservation medium of 90% HE200 medium and 10% DMSO.
- 2 Harvest cells and resuspend at a cell density of 5–10 x 10<sup>6</sup> cells/mL with the fresh cryopreservation medium.
- 3 Transfer 293 cells into cryovials.
- 4 Achieve cryopreservation following standard procedures, do not directly put into liquid nitrogen.
- 5 Transfer frozen cells to liquid nitrogen.

#### Other information

For Research Use Only. Not for use in diagnostic procedures. This product is sold for research and development purposes only. It is not for any human or animal therapeutic or clinical diagnostic use. It is not intended for food, drug, household, agricultural, or cosmetic use. Read the Safety Data Sheets (SDSs) and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.

#### **Related product**

< Transfection System >

| Gxpress 293 Transfection & Medium Kit    | GX293-MAK-0010 |
|------------------------------------------|----------------|
| Gxpress 293 Transfection & Medium Kit II | GX293-MK-0010  |
| Gxpress 293 Transfection Kit             | GX293-RK-0010  |
| Gxpress 293 TF Reagent                   | GX293-TF-0010  |
| Gxpress 293 Enhancer                     | GX293-EN-0010  |

#### < Chemically Defined Medium >

| HE100 medium            | HE100-0010    | Adhesive culture   |
|-------------------------|---------------|--------------------|
| HE150 medium            | HE150-0005    | Cloning assay      |
| HE200 medium            | HE200-0010    | Suspension culture |
| HE300 medium            | HE300-0010    | Suspension culture |
| HE300AZ medium*         | HE300AZ-0010  | Suspension culture |
| HE400 medium            | HE400-0010    | Suspension culture |
| HE400AZ medium*         | HE400AZ-0010  | Suspension culture |
| Gxpress 293 Feed medium | GX293-FD-0010 | Fed-Batch culture  |

\* Ready-to-use medium with L-alanyl-L-glutamine